Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ibrahim Uçar, ${ }^{\text {a }}$ Okan Zafer Yesilel, ${ }^{\text {b }}$ Ahmet Bulut, ${ }^{\text {a* }}$ Halis Ölmez ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit-Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit-Samsun, Turkey

Correspondence e-mail: abulut@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.083$
Data-to-parameter ratio $=18.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquabis(N, N-dimethylethylenediamine- $\kappa^{2} N, N^{\prime}$)copper(II) squarate

The crystal structure determination of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)$, is reported. It adopts an elongated octahedral trans- $\left[\mathrm{CuN}_{4} \mathrm{O}_{2}\right]$ coordination geometry with the $\mathrm{Cu}^{\mathrm{II}}$ atom located at a centre of symmetry. The axial $\mathrm{Cu}-\mathrm{O}$ bond length is $2.6066(17) \AA$, while the equatorial $\mathrm{Cu}-\mathrm{N}$ bond lengths are 1.9849 (16) and 2.1102 (16) \AA. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are responsible for linking the complex cation to the squarate dianion, forming layers. The anion is also centrosymmetric.

Comment

Copper(II) complexes having ethylenediamine derivatives have potential applications especially in developing photocontrolling materials such as hybrid materials (Choy et al., 2002), photochromism (Takahashi et al., 2002), and thermochromism (Narayanan \& Bhadbhade, 1998). The structure of a number of semi-coordinated $\mathrm{Cu}^{\mathrm{II}}$ complexes with N-substituted ethylenediamine ligands have been systematically investigated: N-ethylethylenediamine (N-eten; Grenthe et al., 1979), ethylenediamine (en; Maxcy \& Turnbull, 1999), N methylethylenediamine (N-Meen; Akitsu \& Einaga, 2003), N, N-dimethylethylenediamine (N - $\mathrm{Me}_{2} \mathrm{en}$; Akitsu \& Einaga, 2004a; Içbudak et al., 2003) and N, N^{\prime}-dimethylethylenediamine ($N^{\prime}-\mathrm{Me}_{2} \mathrm{en}$; Akitsu \& Einaga, 2004b; Içbudak et al., 2003). As part of our ongoing research on squaric acid $\left(\mathrm{H}_{2} \mathrm{Sq}\right)$ and its mixed-ligand metal complexes (Uçar et al., 2004; Yesilel et al., 2004), the title compound, (I), has been synthesized and its crystal structure (Fig. 1) is reported.

The crystal structure consists of a complex cation and a squarate dianion. The title complex adopts an elongated octahedral trans- $\left[\mathrm{CuN}_{4} \mathrm{O}_{2}\right]$ coordination geometry, in which atom Cu 1 is located at a centre of symmetry. The axial $\mathrm{Cu} 1-$ O1 semi-coordination bond distance is $2.6066(17) \AA$ (the semi-coordination bond range is $2.22-2.89 \AA$ for $\mathrm{H}_{2} \mathrm{O}$; Hath-

Received 16 June 2004
Accepted 23 June 2004
Online 30 June 2004

Figure 1
An ORTEP-3 (Burnett \& Johnson, 1996) view of the constituent ions of (I), showing the atom-numbering scheme and 40% probability displacement ellipsoids. The H atoms of methylene and methyl groups have been omitted for clarity. [Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1-x,-y$, $-z$.]

Figure 2
A view of the hydrogen-bonding interactions (dashed lines) in (I).
away, 1973). The corresponding $\mathrm{Cu}-\mathrm{O}$ bond lengths for the en, N -Meen, N -Eten and N -Me Me_{2} en complexes are 2.579 (4), 2.569 (2), 2.594 (3) and 2.605 (4) Å, respectively (Akitsu \& Einaga, 2003; Grenthe et al., 1979; Akitsu \& Einaga, 2004a; Içbudak et al., 2003; Maxcy \& Turnbull, 1999). The Cu $\mathrm{N} 1\left(\mathrm{NH}_{2}\right)$ and $\mathrm{Cu} 1-\mathrm{N} 2\left(\mathrm{NMe}_{2}\right)$ bond distances in the title complex are 1.9849 (16) and 2.1102 (16) \AA, respectively. These $\mathrm{Cu}-\mathrm{N}$ bond lengths are found to be almost the same as in $\mathrm{Cu}^{\text {II }}$ complexes with N, N-dimethylethylenediamine and N, N^{\prime} dimethylethylenediamine ligands (Akitsu \& Einaga, 2004b; Içbudak et al., 2003). The corresponding $\mathrm{Cu}-\mathrm{N}\left(\mathrm{NH}_{2}\right)$ bond
distances were found to be 2.012 (2) and 2.019 (2) \AA for the en, 2,004(2) \AA for the N-Meen and 2.013 (3) \AA for the N-Eten complexes (Maxcy \& Turnbull, 1999; Akitsu \& Einaga, 2003). The difference in the $\mathrm{Cu}-\mathrm{N}$ bond lengths observed in the title complex may be attributed to the steric hindrance of the methyl groups. The $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$ bond angle of the chelate ligand is $85.02(6)^{\circ}$, slightly larger than that of the N-Meen complex $\left[84.58(7)^{\circ}\right]$. The $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$ torsion angle [49.8 (3) ${ }^{\circ}$] is found to be almost the same as in the related study of copper(II) complexes having ethylenediamine derivatives (Içbudak et al., 2003; Akitsu \& Komorita, 2002).

The crystal packing of the title complex is illustrated in Fig. 2. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are formed between the complex cation and the squarate dianion (Table 2). Each centrosymmetric squarate dianion links four centrosymmetric $\left[\mathrm{Cu}\left(N-\mathrm{Me}_{2} \mathrm{en}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ cations to each other via hydrogen bonds. These hydrogen bonds are responsible for linking the ions into layers which lie parallel to the $a b$ plane (Fig. 2).

Experimental

Squaric acid ($\mathrm{H}_{2} \mathrm{Sq} ; 0.57 \mathrm{~g}, 5 \mathrm{mmol}$) dissolved in 25 ml water was neutralized with $\mathrm{NaOH}(0.40 \mathrm{~g}, 10 \mathrm{mmol})$ and added to a hot solution of copper(II) chloride dihydrate ($0.853 \mathrm{~g}, 5 \mathrm{mmol}$) dissolved in 50 ml water. The mixture was refluxed at 353 K for 12 h and then cooled to room temperature. The green crystals which formed were filtered off and washed with water and methanol, and dried in a vacuum. A solution of N, N-dimethylethylenediamine $(0.176 \mathrm{~g}, 2 \mathrm{mmol})$ in water (50 ml) was added dropwise with stirring to a suspension of $\mathrm{CuSq} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.212 \mathrm{~g}, 1 \mathrm{mmol})$ in water (50 ml). The mixture was stirred at 323 K for 12 h and then cooled to room temperature. After a few days, well formed crystals were selected for X-ray studies.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)$
$M_{r}=387.92$
Orthorhombic, $P b c a$
$a=11.3829$ (9) \AA
$b=11.5359$ (12) A
$c=13.0358(10) \AA$
$V=1711.8(3) \AA^{3}$
$Z=4$
$D_{x}=1.505 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.577, T_{\text {max }}=0.875$
15461 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.083$
$S=0.87$
2313 reflections
123 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation

Cell parameters from 8046 reflections
$\theta=1.6-29.2^{\circ}$
$\mu=1.31 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, violet
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$

> 2313 independent reflections
> 1387 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.048$
> $\theta_{\max }=29.3^{\circ}$
> $h=-14 \rightarrow 15$
> $k=-15 \rightarrow 15$
> $l=-16 \rightarrow 17$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0524 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.50 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0099(9)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$2.6066(17)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.1102(16)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.9849(16)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$85.02(6)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$84.61(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$89.21(6)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$49.8(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1}-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iii }}$	$0.848(10)$	$1.946(12)$	$2.778(2)$	$167(3)$
$\mathrm{O}^{\text {iv }}-\mathrm{H} 1 \cdots \mathrm{O}^{\text {iv }}$	$0.843(10)$	$1.928(13)$	$2.756(2)$	$167(3)$
$\mathrm{N} 1-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{v}}$	$0.855(10)$	$2.092(14)$	$2.886(2)$	$154(2)$
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O}^{\text {vi }}$	$0.867(9)$	$2.105(13)$	$2.928(2)$	$158(2)$
Symmetry codes: (iii)	$\frac{1}{2}+x, y, \frac{1}{2}-z ;$	(iv) $1-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (v) $x, \frac{1}{2}-y, \frac{1}{2}+z ;$ (vi)		
$\frac{1}{2}-x,-y, \frac{1}{2}+z$.				

H atoms attached to C atoms were placed at calculated positions ($\mathrm{C}-\mathrm{H}=0.96-0.97 \AA$) and were allowed to ride on the parent atom $\left[U_{\text {iso }}\left(\mathrm{H}_{\text {methyl }}\right)=1.5 U_{\text {eq }}(\mathrm{C})\right.$ and $\left.U_{\text {iso }}\left(\mathrm{H}_{\text {methylene }}\right)=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The other H atoms were located in a difference map and were refined with the $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ distances restrained to be 0.87 (2) and 0.85 (2) \AA, respectively.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s)
used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Akitsu, T. \& Komorita, S. (2002). Bull. Chem. Soc. Jpn, 75, 767-768.
Akitsu, T. \& Einaga, Y. (2003). Acta Cryst. E59, m991-m993.
Akitsu, T. \& Einaga, Y. (2004a). Acta Cryst. E60, m234-m236.
Akitsu, T. \& Einaga, Y. (2004b). Acta Cryst. C60, m162-m164.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Choy, J.-H., Yoon, J.-B. \& Jung, H. (2002). J. Phys. Chem. B. 106, 11120-11126.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Grenthe, I., Paoletti, P., Sandstorm, M. \& Glilberg, S. (1979). Inorg. Chem. 18, 2687-2692.
Hathaway, B. J. (1973). Struct. Bonding, 14, 49-67.
Içbudak, H., Olmez, H., Yesilel, O. Z., Arslan, F., Naumov, P., Jovanovski, G., Ibrahim, A. R., Usman., A., Fun, H.-K., Chantrapromma, S. \& Ng, S. W. (2003). J. Mol. Struct. 657, 255-270.

Maxcy, K. R. \& Turnbull, M. M. (1999). Acta Cryst. C55, 1986-1998.
Narayanan, B. \& Bhadbhade, M. M. (1998). J. Coord. Chem. 46, 115-123.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Takahashi, K., Nakajima, R., Gu, Z.-Z., Yoshiki, H., Fujishima, A. \& Sto, O. (2002). Chem. Commun. pp. 1578-1579.

Uçar, I., Yesilel, O. Z., Bulut, A., Içbudak, H., Olmez, H. \& Kazak, C. (2004). Acta Cryst. E60, m322-m324.
Yeşilel, O. Z., Bulut, A., Uçar, I., Içbudak, H., Ölmez, H. \& Büyükgüngör, O. (2004). Acta Cryst. E60, m228-m230.

